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Abstract

Ordinal Priority Approach (OPA) has recently been proposed to determine the weights of experts,

attributes, and alternatives using ordinal preference without precise information for multi-attribute

ranking and selection (MARS). This study extends OPA with preference elicitation under incomplete

information to counter the parametric and preference uncertainty within MARS. Specifically, we

propose Preference Robust Ordinal Priority Approach (OPA-PR) within a two-stage optimization

framework to generalize marginal utility structure and resolve ambiguity in ranking parameters and

utility preferences. In the first stage, the worst-case marginal utility functions are elicited from utility

preference ambiguity sets, characterized by monotonicity, normalization, concavity, and Lipschitz

continuity for global information, and moment-type preference elicitation for the local. In the second

stage, decision weights are optimized based on the elicited marginal utility functions, considering the

ranking parameters within norm-, budget-, and conditional value-at-risk-based ambiguity sets. We

derive tractable reformulations of OPA-PR, especially through piecewise linear approximation for the

marginal utility preference ambiguity sets for the first stage. This approximation is verified by the

error bounds for both stages, establishing the foundation of preference elicitation strategy design.

The proposed approach is demonstrated through a numerical experiment on the emergency supplier

selection problem, including the case, sensitivity, and comparison tests.

Keywords: Multi-attribute ranking and selection, Incomplete preference information, Preference and

parameter uncertainty, Preference elicitation strategy, Preference robust ordinal priority approach

⋆Disclosure of interest: The authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.

⋆⋆Data availability: Data will be made available on request.
∗Corresponding author
Email address: 13127073530@163.com (Renlong Wang)

https://arxiv.org/abs/2412.12690v2


1. Introduction

Over the past few decades, multi-attribute ranking and selection (MARS) has emerged as a critical

area of operations research, particularly for tackling complex discrete decision problems characterized

by conflicting objectives and diverse data (Colorni, 2024). A classic MARS problem involves a decision-

maker (DM) determining the optimal alternative from a set of alternatives or establishing global

rankings based on multiple attributes evaluated by various experts (Greco et al., 2024). Given expert

set I := {1, . . . , I}, attribute set J := {1, . . . , J}, and alternative set K := {1, . . . ,K}, the multi-

attribute group evaluation score Zk for alternative k ∈ K can be determined by a function F : R →
R that has an associated collection of the weights for all expert i ∈ I and attribute j ∈ J and

corresponding utility function:

Zk = F (vjk) =
∑
i∈I

wi

∑
j∈J

wjuij(vjk), ∀k ∈ K,

where vjk denotes the performance of alternative k under attribute j, uij : R → R represents the

utility function for attribute j of expert i that mapping the performance score vjk of alternative k to

the utility value of expert i under attribute j, wi and wj are the weight for expert i and attribute j,

respectively.

Classical research is mainly based on the weights and utility functions obtained through sophis-

ticated heuristic methods with complete information assumption, which means one can always elicit

precise weights and utility functions from collected data (Ahn, 2017). If DM can provide all the

necessary information to resolve MARS problems, the prior (sophisticated) methods based on precise

data are advisable. However, challenges arise when the information is incomplete in specifying the

weights and utility functions (Guo et al., 2024). Correspondingly, there are two different sources of

uncertainty that can plague a MARS problem arising from incomplete information: parameter uncer-

tainty and preference uncertainty (Lu and Shen, 2021). In parameter uncertainty, the DM is unaware

of the exact nature of the model parameters influencing their decision, a common issue in collecting

alternative performance. Preference uncertainty occurs when a decision must be made but the pref-

erences of DMs regarding trade-offs among incomparable outcomes are not completely determined,

which is typical in eliciting the utility functions for alternative performance and weights for experts

and attributes. This preference uncertainty in the utility structure, referred to as utility preference

ambiguity in decision science literature, is an endogenous uncertainty that arises from variability, con-

tradiction, and difficulties in accurately defining preferences with incomplete information (Hu et al.,

2024). Overall, the above uncertain situations with incomplete information have general implications

in the contexts characterized by time constraints, inadequate data, and limited domain knowledge

and cognitive burden of experts (Zayat et al., 2023).
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In this study, based on Ordinal Priority Approach (OPA), a value function-based MARS methods

under ordinal preference, we propose Preference Robust Ordinal Priority Approach (OPA-PR) to

counter the parametric and preference uncertainty. To effectively solve OPA-PR for practical usage,

we also develop a piecewise linear approximation (PLA) scheme to derive the tractable reformulation

with error bound guarantees and preference elicitation strategy.

1.1. Related Literature

In this section, we aim to position our contributions in the literature by briefly reviewing relevant

studies on MARS with incomplete preference information. The study considers scenarios where DM

cannot provide complete information for all experts, attributes, and alternatives, whether subjective

or objective, except for rankings, the minimal data required for decision-making. To provide con-

textual structure, we identify two primary streams of MARS with incomplete preference information

since 21st century: optimization-based methods and extreme point-based methods, as well as OPA,

which serves as the baseline for this study. Notably, since the 1960s, classical MARS methods and

their corresponding extended models have gradually emerged to address incomplete preference infor-

mation. These models have their own assumptions and axioms, achieving significant development

in their respective research areas. For further information into these representative methods and

their evolution, we recommend readers refer to the review by Greco et al. (2024), which covers the

development of MARS over the past fifty years.

The optimization-based methods aim to solve the optimal weight assignment under the constraints

of incomplete preference information, represented by data envelopment analysis-preference voting

model (DEA-PVM) and robust ordinal regression (ROR). DEA-PVM is a typical approach based on

social choice theory. It maximizes the total score of each alternative defined as the weighted sum

of their votes across all ranking positions (Ahn, 2024a). In this process, it considers the voting per-

formance of other alternatives, essentially serving as a relative benchmarking method. The classical

model of DEA-PVM is the one proposed by Cook and Kress (1990), which evaluates the position of

each alternative relative to the entire set of alternatives and employs a discrimination intensity func-

tion to assess its properties, which has been shown to be equivalent to the Borda-Kendall consensus

model under certain conditions. Currently, DEA-PVM has been expanded to include various types

of preference information and constraints, such as ratio scales (Izadikhah and Farzipoor Saen, 2019),

decreasing and convex sequences (Llamazares, 2016), cross-evaluation (Sharafi et al., 2022), and exclu-

sion of inefficient candidates (Baranwal and Vidyarthi, 2016). ROR, based on multi-attribute utility

theory, identifies and utilizes a complete set of compatible instances, represented by necessary and

possible weak preference relations, of value functions that reflect the preferences of all DMs involved

(Greco et al., 2008). It employs piecewise-linear marginal value functions, characterized by break-

points when partial preference information is present, such as in pairwise and intensity comparisons.
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Subsequently, ROR identifies the most robust feasible weight disparities based on the partial prefer-

ence information, which can be used to identify the relations between alternatives. Currently, ROR

has been adapted in various ways to integrate with other methods, including stochastic multiobjective

acceptability analysis (SMAA) (Corrente et al., 2016), non-additive value functions (represented by

the Choquet integral and Sugeno integral (Beliakov et al., 2020)), and outranking relation preference

models (such as ELECTRE (Corrente et al., 2017) and PROMETHEE (Kadziński et al., 2012)).

The extreme point-based methods aim to find the extreme points that characterize the weights

incorporating in a set of incomplete preference information (Ahn, 2015). Once identified, the final

rankings of alternatives are determined by multiplying the extreme points by the attribute values

of the alternatives. Ahn (2015) proposed a straightforward method for finding the extreme points

of common types of incomplete preference information in the literature, including weakly ordered

relations, ratio scales, absolute differences, and lower bounds on weights. Ahn (2017) transformed the

coefficient matrices of incomplete preference information into a class of M-matrices to identify extreme

points, subsequently minimizing the squared deviations from the extreme points to approximate the

weights. Furthermore, Ahn (2024b) derived a dual linear programming problem to obtain closed-form

solutions, identifying extreme points derived from a set of (strictly) ranked preference information.

Additionally, a prevalent weight elicitation approach involves rank-based surrogate weights, where

each surrogate weight can be uniquely represented by a set of extreme points (Burk and Nehring,

2023). Notable, there reveals a connection between DEA-PVM and extreme point-based methods

(Ahn, 2024a). For instance, Llamazares (2024) proposed explicit expressions for weights of various

simplex centroids in ranking voting systems inspired by specific simplex centroids of ROC weights.

Overall, the studies discussed above seek to engage constructively and transparently with DMs to

accurately elicit and represent their evolving preferences while effectively managing imperfect pref-

erence information that may be partial, inconsistent, unstable, or uncertain. However, some studies

subjectively assume a piecewise linear utility function based on multi-attribute utility theory, which is

a simplified approximation to the true utility function. Theoretically, this subjective assumption fails

to provide error bounds and performance guarantees for utility function approximation, going further

to provide an effective preference elicitation scheme that reduces these errors.

OPA, proposed by Ataei et al. (2020), is an optimization-based method for addressing MARS

problems with incomplete preference information. It frames the weight elicitation problem as a linear

programming model within a normalized weight space with strong dominance relations (or refers to

ordinal preference), allowing for the simultaneous determination of weights for experts, attributes, and

alternatives (Wang, 2024a). OPA utilizes ordinal data as model inputs, which are more readily avail-

able and stable compared to the cardinal values and pairwise comparisons used in other MARS meth-

ods. OPA eliminates the need for data standardization, expert opinion aggregation, and prior weight
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determination. Recently, several extensions of OPA have emerged, including fuzzy OPA (OPA-F)

(Mahmoudi et al., 2022c; Pamucar et al., 2023), rough set OPA (OPA-RS) (Du et al., 2023; Kucuksari

et al., 2023), grey OPA (OPA-G) (Sadeghi et al., 2024), and robust OPA (OPA-R) (Mahmoudi et al.,

2022a) to address data uncertainty; partial OPA (OPA-P) (Wang et al., 2024) for managing Pareto

dominance relations; TOPSIS-OPA (Mahmoudi et al., 2021), DEMATEL-OPA (Zhao et al., 2024),

and DGRA-OPA-P (Wang, 2024b) for large-scale group decision-making; and DEA-OPA (Mahmoudi

et al., 2022b; Cui et al., 2024) for relative efficiency analysis. However, despite its practical appli-

cations, research on the fundamental properties of OPA is limited (Mahmoudi and Javed, 2023a,b).

Consequently, the lack of theoretical analysis of structural characteristics of OPA prevents current

research from effectively addressing preference ambiguity and the broader utility forms it represents.

Notably, Wang (2024a) appears to be the only study that systematically examined the fundamental

properties of the original OPA model, derived its equivalent expression, and demonstrated its closed-

form solution, decomposability, and relationship with common rank-based surrogate weights, such as

rank order centroid and rank reciprocal weights. Building on these properties, the Generalized Ordinal

Priority Approach (GOPA) was introduced within a bilevel optimization framework, where the lower

level employs cross-entropy utility minimization for preference elicitation with incomplete information,

and the upper level optimizes the weights. Similarly, our discussion is driven by the insights gained

from the structural characteristics and properties of OPA, forming the basis for extending OPA to

handle parameter and utility preference ambiguity, which differentiates our work from that of Wang

(2024a).

1.2. Contributions

This study proposes OPA-PR that extends OPA to the MARS scenarios involving parameter

uncertainty and utility preference ambiguity under incomplete preference information. It utilizes an

estimate-then-optimize two-stage procedure, where the first-stage elicit the worst-case utility functions

cross all experts and attributes from the preference ambiguity set of all plausible marginal utility

functions, and the second-stage optimizes the weights within the ranking parameter ambiguity sets.

One of the most important components of OPA-PR are the design of preference ambiguity sets,

incorporating the properties of monotonicity, normalization, concavity, and Lipschitz continuity for

global information, and moment-type preference elicitation for location information, and its PLA-

based tractable reformulation. The main contributions are summarized as follows:

• Modeling: Despite Wang (2024a) proposing GOPA in bilevel optimization framework based

on the cross-entropy utility minimization estimator for preference elicitation, his model actually

considers the deterministic incomplete preference information, where DM only provides the

preference information they certained, including the form of weak ordered relations, ratio scales,
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absolute differences, and lower bounds. In contrast, our approach considers undeterministic

incomplete preference information represented by preference ambiguity sets, which naturally

encompass deterministic cases. The preference forms discussed in Wang (2024a), along with

other common forms in decision analysis literature, can be mathematically represented using

the proposed preference ambiguity sets (see Examples 1-3). Additionally, the OPA-R proposed

by Mahmoudi et al. (2022a) can be viewed as a specific instance of our model when the worst-

case utility employs rank-order centroid weights and attribute rankings are based on discrete

scenarios with box ambiguity sets.

• Methodology: We employ a linear envelope of a piecewise linear concave marginal utility

function to determine the worst-case utility function, with fixed values at finite points derived

from the proposed preference elicitation strategy. This leads to a linear tractable reformulation

of the first-stage problem with infinite dimensions (Proposition 3). We then derive a tractable

reformulation for the second-stage problem through dual theory, incorporating ranking param-

eter ambiguity sets based on norm, budget, and CVaR (Propositions 4-6), representing a novel

extension for OPA-R with various ambiguity sets.

• Theory: In contrast to assuming a piecewise linear form for the marginal utility subjectively,

we provide the theoretical foundation for the PLA of the marginal utility function, i.e., ap-

proximation error bounds for both stages of OPA-PR. We demonstrate that when the true

utility function is concave, the step-like approximation of the partial preference information in

moment-type preference elicitation is equivalent to the PLA of the marginal utility function, with

no approximation error in the first stage (Propositions 7 and 8), which indicates that information

forms, such as deterministic utility comparisons and stochastic lottery comparisons, introduce

no errors. Using a pseudo-metric, we quantify the disparities between the approximated and un-

approximated arguments of the first stage (i.e., the elicited marginal utility functions) (Lemma

2), followed by error bounds for the second stage solutions (Theorem 2). Additionally, we show

the decomposability of the optimal weights in OPA-PR, given the worst-case ranking parameters

(Theorem 1).

1.3. Organization

The structure of this paper is organized as follows: Section 2 outlines the preliminaries of OPA.

Section 3 proposes the unified framework, tractable reformulation, and approximation error bounds

of OPA-PR. Section 4 demonstrates the proposed approach through a numerical experiments on

emergency supplier selection during the 7.21 mega-rainstorm disaster in Zhengzhou, China, including

the case, sensitivity, comparison tests. Section 5 gives the conclusions and future directions.
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1.4. Notation

Throughout this paper, we use the following notation. By convention, Rn represents an n-

dimensional Euclidean space, and Rn×m denotes the space of n×m matrices. Vectors are denoted by

bold letters, for example, a ∈ Rn. Matrices are denoted by boldface letters, for example, A ∈ Rn×m.

The norm form of a letter is used to represent the elements of a vector or matrix, for example, aij

denotes the element in the i-th row and j-th column of A. The floral form represents a set, for

example, A. We use k ∈ [K] to denote k = 1, . . . ,K.

2. Preliminaries

Consider a classical MARS problem where DM needs to select the optimal alternative from K

alternatives, K := {1, . . . ,K}, based on J attributes, J := {1, . . . , J}, as evaluated by I experts,

I := {1, . . . , I}. In OPA, DM initially assigns importance ranking ti ∈ [I] to each expert i ∈ I. Each
expert i ∈ I is then required to provide the ranking sij ∈ [J ] for each attribute j ∈ J and the ranking

rijk ∈ [K] for each alternative k ∈ K under attribute j ∈ J . Expert evaluations are conducted

independently without group discussions to ensure rankings reflect their personal preferences. By

convention, the most important attribute is ranked as 1, the next as 2, and so forth. To streamline

subsequent discussions, we first define the following three sets

X 1 := {(i, j, k, l) ∈ I × J ×K ×K : rijl = rijk + 1, rijk ∈ [K − 1]} ,

X 2 := {(i, j, k) ∈ I × J ×K : rijk = K} ,

X := {(i, j, k) ∈ I × J ×K} .

Intuitively, X defines the indices of all experts, attributes, and alternatives, while X1 represents the set

of indices of alternatives with consecutive rankings under each expert and attribute, and X2 denotes

the set of indices of alternatives ranked last under each expert and attribute. The following presents

the original OPA model proposed by Ataei et al. (2020), referred to as OPA-I in this study.

[OPA-I] max
w,z

z,

s.t. z ≤ tisijrijk(wijk − wijl), ∀(i, j, k, l) ∈ X 1,

z ≤ tisijrijk(wijk), ∀(i, j, k) ∈ X 2,

I∑
i=1

J∑
j=1

K∑
k=1

wijk = 1,

wijk ≥ 0, ∀(i, j, k) ∈ X ,

(1)
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where z is a weight disparity scalar. After solving for the optimal solution (z∗,w∗), the weights of

experts, attributes, and alternatives, denoted as W I , WJ , and WK, are then given by

W I
i =

J∑
j=1

K∑
k=1

w∗
ijk, ∀i ∈ I,

WJ
j =

I∑
i=1

K∑
k=1

w∗
ijk, ∀j ∈ J ,

WK
k =

I∑
i=1

J∑
j=1

w∗
ijk, ∀k ∈ K.

(2)

OPA searches for a set of weights that maximize the weight disparity scalar for alternatives with

consecutive rankings while reflecting the ordinal preferences of experts, attributes, and alternatives,

within the normalized weight space. Although Ataei et al. (2020) refers to the outcomes as “weights,”

they actually represent the value of the ranked object derived from the value function. However, to

maintain consistency, we retain the original terminology. This difference maximization process in OPA-

I is common in MARS methods, such as ROR, which identifies relations between alternatives regarding

necessary and possible weak preference by maximizing the allowable representation error (Greco et al.,

2008). Furthermore, OPA-I employs a practical yet unconventional approach by multiplying the

weight disparities of consecutively ranked alternatives by the rankings of experts, attributes, and

alternatives. Intuitively, this leads to the intuition that as rankings increase, the marginal effect of

weight disparity between consecutive alternatives decreases. Wang (2024a) shows the rationale behind

the manipulation in OPA-I by deriving an equivalent formulation and analyzing the decomposability

of its solutions into the product of commonly used ranking-based surrogate weights in decision theory,

which are determined by the corresponding rankings.

The following proposition presents the equivalent formulation of OPA-I proposed by Wang (2024a),

referred to as OPA-II in this study.

Proposition 1 (Wang (2024a)). Map the alternative index k ∈ K to the ranking index r ∈ R
corresponding to their ranking position rijk and define Y := {(i, j, r) ∈ I × J ×R}. OPA-I has the

following equivalent formulation

[OPA-II] max
w̄,z̄

z̄,

s.t. RUROC
r z̄ ≤ tisijw̄ijr, ∀(i, j, r) ∈ Y,

I∑
i=1

J∑
j=1

R∑
r=1

w̄ijr = 1,

w̄ijr ≥ 0, ∀(i, j, r) ∈ Y,

(3)
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where UROC
r = (

∑R
h=r

1
h)/R is the rank order centroid weight for the alternative ranked r ∈ R. After

solving for the optimal solution (z∗, w̄∗), w̄∗
ijr are mapped to w∗

ijk to calculate the weights of experts,

attributes, and alternatives based on Equation (2).

OPA-II further reveals the logic behind weight assignment of OPA. It searches for a set of weights

that maximize the weight disparity scalar with the rank order centroid weights for ranked alternatives

while reflecting the ordinal preferences of experts and attributes, within the normalized weight space.

The following corollary illustrates that the optimal weights of OPA-I can be decomposed into

rank-based surrogate weights independently determined by the ranking indices of experts, attributes,

and alternatives, thereby forming a diminishing marginal effect commonly observed in rank-based

surrogate weights (Burk and Nehring, 2023).

Corollary 1 (Wang (2024a)). Let wROC
l and wRR

l denote the rank order centroid weight and rank

reciprocal weight of the object ranked l, defined as wROC
l = (

∑L
h=l

1
h)/L and wRR

l = 1/(l
∑L

h=1
1
h) for

all l = 1, . . . , L. The optimal weights for OPA-I are equivalent to

w∗
ijk = wRR

ti wRR
sij w

ROC
rijk

, ∀(i, j, k) ∈ X .

From Corollary 1, it can be inferred that the identical constraint coefficients tisijrijr in OPA-I do

not necessarily indicate identical weights. Identical weights only occur when both rijk and tisij are

correspondingly the same. Corollary 1 further demonstrates that solving the multi-expert OPA model

is equivalent to solving the single-expert OPA model and then applying rank reciprocal weights for

aggregation, which is adopted in the rest of this study. For all i ∈ I, define

si = (si1, . . . , si1︸ ︷︷ ︸
R elements

, . . . , siJ , . . . , siJ︸ ︷︷ ︸
R elements

)⊤,

UROC =
(
UROC
1 , . . . , UROC

R , . . . , UROC
1 , . . . , UROC

R︸ ︷︷ ︸
JR elements

)⊤
,

w̄i = (w̄i11, . . . , w̄i1R, w̄i21, . . . , w̄iJR︸ ︷︷ ︸
JR elements

)⊤,

W̄i = diag(w̄i11, . . . , w̄i1R, w̄i21, . . . , w̄iJR︸ ︷︷ ︸
JR elements

)⊤.

We can rewrite the OPA-II for any i ∈ I (i.e., the single-expert model) in matrix form as

max
w̄i∈W̄i,z̄i

z̄i,

s.t. RUROC z̄i ≤ W̄isi,

W̄i :=

{
w̄i ∈ RJR

∣∣∣∣∣ e⊤w̄i = 1,

w̄i ≥ 0,

}
,

(4)
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where e denotes a JR-dimensional vector of all ones.

3. Preference Robust Ordinal Priority Approach

This section introduces the preference robust ordinal priority approach (OPA-PR) based on a

bilevel optimization framework to counter the ambiguity within both the utility structure and ranking

parameter.

3.1. Modeling Framework

The components that may introduce uncertainty into OPA in Equation (4) include the alternative

utilities and attribute ranking parameters. For alternative utilities, it is desired to extend the rank

order centroid weights for alternatives to a more general utility structure that accounts for ambiguity

in the preference information. This can significantly expand the flexibility of the proposed approach by

customizing it to reflect different preferences, rather than restricting it to a specific alternative utility

structure as in OPA. The focus of OPA-PR in preference ambiguity is the situation where expert i ∈ I
does not have complete information to uniquely specify their marginal utility function uij : R → R
for attribute j ∈ J that maps alternative rankings to utility values. However, partial information can

be gathered to construct the ambiguity sets of marginal utility functions, denoted as Uij , such that

the true marginal utility function reflecting the expert preference falls within the ambiguity set with

high likelihood. Similarly, for ranking parameter ambiguity, a common robust optimization approach

is applied to construct the ambiguity sets for attribute rankings s̃i, denoted as Vi.

This study formulates OPA-PR in an estimate-then-optimize two-stage procedure. Consider a

measurable space (Ω,F), where Ω is a finite non-empty set and F is a σ-algebra on Ω. The finite

sample assumption that Ω := {ξ1, . . . , ξE} with 1 ≤ E < ∞ and E := {1, . . . , E} is common in

literature related to risk preference, which can be regarded as a discrete sample approximation of the

continuous sample space (Wu et al., 2022). The first stage involves eliciting the worst-case marginal

utility function u∗ij for all (i, j) ∈ I ×J from a set of plausible marginal utility functions Uij over the

expectation of random return h(x, ξ) of lottery x ∈ Rm indexed by the finite scenario ξ ∈ Rn with

associated probabilities pe = P[ξ = ξe] for e ∈ E . In the second stage, informed by the estimated

worst-case marginal utility function. It optimize for the optimal decision weights under the worst-

case ranking parameters from the corresponding ambiguity set Vi. Let U∗
ijr =

∫ R−r+1
0 du∗ij(x) for all

(i, j, r) ∈ Y and

U∗
i =

(
U∗
i11, . . . , U

∗
i1R, U

∗
i21, . . . , U

∗
iJR︸ ︷︷ ︸

JR elements

)⊤
.
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For any i ∈ I, we consider the modeling framework in Equation (5) for OPA-PR.

max
w̄i∈W̄i,zi

z̄i

s.t. RU∗
i z̄i ≤ W̄is̃i ∀s̃i ∈ Vi

(Second Stage: Optimize)

u∗ij = argmin
uij∈Uij

EP[uij(h(x, ξ))] ∀j ∈ J (First Stage: Estimate)

(5)

The proposed OPA-PR framework clarifies the optimal weights when experts exhibit conservative

(risk-averse) behavior against uncertainty. It optimizes the worst-case marginal utility function from

the ambiguity set that reflects the preference attitude of expert in the first stage, providing a more

interpretable formulation. The key to success is designing the ambiguity sets for both marginal utility

functions and attribute rankings, particularly the ambiguity set for marginal utility functions based

on partial preference information of experts, and further determining the tractable reformulation of

Equation (5).

3.2. First-Stage Estimation: Worst-Case Marginal Utility Functions

This section presents the ambiguity set design of the marginal utility functions and develops a

tractable reformulation for the first-stage estimation of OPA-PR.

3.2.1. Ambiguity Set Design for Marginal Utility Functions

We begin with designing the ambiguity set for the marginal utility functions related to the first-

stage problem of OPA-PR, which is formed by the intersection of the following properties of marginal

utility function: monotonicity, normalization, concavity, Lipschitz continuity, and moment-type pref-

erence elicitation.

Let U represent a class of real-valued utility functions, where any u ∈ U is piecewise continuously

differentiable with a finite number of non-differentiable turning points at some of the rankings:

0 = τ0 < · · · < τHij = R,

and Hij := {1, . . . ,Hij} for all (i, j) ∈ I ×J . Suppose that the input x is bounded on Θ := (0, θ] and

θ = R.

Assumption 1 (Monotonicity). The set of utility functions satisfying the monotonicity is denoted

as Umon, where u ∈ U is monotonic if x ⪯ y implies u(x) ≤ u(y) for all x, y ∈ Θ.

Assumption 2 (Normalization). The set of utility functions satisfying the normalization is de-

noted as Unor, where u ∈ U is normalized if u(0) = 0 and u(θ) = 1.
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The monotonicity and normalization of utility functions are common in literature related to deci-

sion theory (Wu et al., 2023).

Assumption 3 (Concavity). The set of utility functions satisfying the concavity is denoted as

Uconc, where u ∈ U is concave if u(λx+(1−λ)y) ≥ λu(x)+ (1−λ)u(y) for all x, y ∈ Θ and λ ∈ [0, 1].

The concavity of the utility function reflects the risk aversion preference, implying that for any

random lottery X, one prefers the certain outcome E[X] over the lottery X itself (Armbruster and

Delage, 2015). Although this concavity assumption may not apply to all scenarios, it is generally

suitable for most decision-making situations (Timonin, 2013).

Assumption 4 (Lipschitz continuity). The set of utility functions satisfying the Lipschitz conti-

nuity is denoted as U lip, where u ∈ U is Lipschitz continuous with modulus being bounded by G if

|u(x)− u(y)| ≤ G ∥x− y∥ for all x, y ∈ Θ.

Lipschitz continuity can be interpreted as the restriction that a finite input cannot lead to an

infinite improvement, meaning the preferences cannot change too rapidly around any specific input

(Guo et al., 2024). It establishes an upper bound G for the the first-order derivative of utility function

over Θ. Thus, when the expert specifies their nominal utility function, we can derive G from its

first-order derivative, such as the maximum of ∇u(τ) = 1/(θ) for risk-neutral utility function and

∇u(τ) = (γe−γτ ) / (1− e−γ) for constant absolute risk-aversion utility function over Θ. Additionally,

Lipschitz continuity aids in establishing error bounds for ambiguity set approximations, which will be

shown in Section 3.4.

Assumption 5 (Moment-type preference elicitation). The set of utility functions satisfying the

moment-type preference elicitation is defined as

Umpre :=

{
u ∈ U : −∞ <

∫ θ

0
ψl(τ)du(τ) ≤ cl for l ∈ L

}
, (6)

where ψl : Θ → R are Lebesgue integrable functions and cl are some given constants for l ∈ L :=

{1, . . . , L}.

The term ψl for l ∈ L reflects partial preference information, which varies across attributes among

different experts. It is easy to verify that Umpre is a convex set. The moment-type preference elicitation

set encompasses various forms of partial preference information discussed in the literature related to

decision theory, with several sensible examples presented below.
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Example 1 (Value comparison (Wang, 2024a)). The value comparison primarily involves par-

tial preference information for a value prospect, including ratio scales, absolute differences, and lower

bounds, with the corresponding set of utility function defined as:

U rs :=

{
u ∈ U :

∫ r

0
du(τ)− αl1

∫ r−1

0
du(τ) = 0 for l1 ∈ L1

}
,

Uad :=

{
u ∈ U :

∫ r

0
du(τ)−

∫ r−1

0
du(τ) = βl2 for l2 ∈ L2

}
,

U lb :=

{
u ∈ U :

∫ r

0
du(τ) = γl3 for l3 ∈ L3

}
,

where U rs, Uad, and U lb represent the set of utility functions with ratio scales, absolute differences,

and lower bounds, respectively. In cases of complete preference information, U rs is commonly applied

in pairwise-comparison-based MARS methods like AHP, ANP, and BWM, while Uad is prevalent in

quasi-distance-based methods like TOPSIS, VIKOR, and EDAS. We can express the above sets using

indicator functions as follows:

U rs :=

{
u ∈ U :

∫ θ

0
(1(0,r](τ)− αl11(0,r−1](x))du(τ) = 0 for l1 ∈ L1

}
,

Uad :=

{
u ∈ U :

∫ θ

0
(1(0,r](τ)− 1(0,r−1](τ))du(τ) = βl2 for l2 ∈ L2

}
,

U lb :=

{
u ∈ U :

∫ θ

0
1(0,r](τ)du(τ) = γl3 for l3 ∈ L3

}
,

where Ir(τ) is indicator functions with domain [0, r] with τ ∈ Θ. Without loss of generality, we can

unify the above sets into the ambiguity set with value comparison:

Uduc :=

{
u ∈ U :

∫ θ

0
ηl(τ)du(τ) = cl for l ∈ L

}
,

which is consistent with the form of Umpre. Notably, ηl is a step function with jumps at given constants

cl for l ∈ L.

Example 2 (Stochastic lottery comparison (Armbruster and Delage, 2015)). Given any lot-

tery with cumulative distribution F (τ) on the domain Θ with the expected utility u(r1) ≤ E[F (τ)] ≤
u(r2). By integration by parts, we have∫ θ

0
u(τ)dF (τ) = u(τ)F (τ)

∣∣∣θ
0
−
∫ θ

0
F (τ)du(τ) ≥

∫ r1

0
du(τ) ⇒

∫ θ

0
(F (τ) + 1(0,r1](τ))du(τ) ≤ 1,

and∫ θ

0
u(τ)dF (τ) = u(τ)F (τ)

∣∣∣θ
0
−
∫ θ

0
F (τ)du(τ) ≤

∫ r2

0
du(τ) ⇒

∫ θ

0
(F (τ) + 1(0,r2](τ))du(τ) ≥ 1,
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where Ir(τ) is the indicator function and u(τ)F (τ)
∣∣∣θ
0
= u(τ)G(τ)

∣∣∣θ
0
= 1 is from the normalization

condition. Then, we have the ambiguity set with stochastic lottery comparisons:

U slc :=

{
u ∈ U :

∫ θ

0
(F (τ) + 1(0,r1](τ))du(τ) ≤ 1,

∫ θ

0
(−F (τ)− 1(0,r2](τ))du(τ) ≤ 1

}
,

which is consistent with the form of Umpre. If the lottery involves pairwise comparisons with corre-

sponding singleton probability, then ψl for l ∈ L in U slc is a step function.

Example 3 (Stochastic dominance relation (Hu and Mehrotra, 2015)). Given any two lot-

teries with cumulative distribution F (τ) and G(τ) with τ ∈ Θ. Suppose that DM prefers F (τ) to G(τ).

By the expected utility theory, we have E[F (τ)] ≥ E[G(τ)], which can be rewriten by integration by

parts as: ∫ θ

0
u(τ)dF (τ) ≥

∫ θ

0
u(τ)dG(τ) ⇒

∫ θ

0
[G(τ)− F (τ)]du(τ) ≥ 0.

Then, we have the ambiguity set with stochastic dominance relation:

U sdr :=

{
u ∈ U :

∫ θ

0
[F (τ)−G(τ)]du(τ) ≤ 0

}
,

which is consistent with the form of Umpre.

The ambiguity set for marginal utility function of OPA-PR can be derived from the intersection

of the previously discussed sets

U := Umon ∩ Unor ∩ Uconc ∩ U lip ∩ Umpre, (7)

where monotonicity, normalization, concavity, and Lipschitz continuity represent global information,

while moment-type preference elicitation serves as local customized information of marginal utility

function. Notably, the ambiguity sets of marginal utility functions differ from each attribute given by

experts, forming the basis for eliciting customized preferences. Thus, for any (i, j) ∈ I × J , we have

the first-stage problem of OPA-PR

ρij = min
uij∈Uij

∑
e∈E

peuij(h(x, ξe)). (8)

3.2.2. First-Stage Tractable Reformulation

This section introduces the piecewise linear approximation (PLA) of the ambiguity set of marginal

utility functions to derive a tractable reformulation of the first-stage elicitation of the worst-case

marginal utility function.

We begin by presenting the PLA of the ambiguity set of marginal utility functions, specifically

Umpre in U , which is nonlinear within the space of utility function U . PLA is of interest for two main
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reasons. First, the ordinal preferences are elicited at discrete rankings in OPA. Connecting utility

values at these points to form a piecewise linear marginal utility function is a straightforward way

to obtain an approximated marginal utility function (Wu et al., 2023). Second, the piecewise linear

assumption is widely used in decision theory research, as seen in various MARS methods such as UTA,

MACBETH, and ROR (Greco et al., 2024).

Definition 1. Let Ũ ⊂ U where any ũ ∈ Ũ is a piecewise linear function with non-differentiable

turning points on Θ. The set of piecewise linear utility functions satisfying moment-type preference

elicitation is defined as

Ũmpre :=

{
ũ ∈ Ũ : −∞ <

∫ θ

0
ψl(τ)dũ(τ) ≤ cl for l ∈ L

}
. (9)

For any uij ∈ Umpre
ij , the corresponding piecewise linear marginal utility function ũij ∈ Ũmpre

ij can

be constructed by connecting the function values at the endpoints of each interval (τhij−1, τhij
] for any

hij ∈ Hij , which is given by the following proposition.

Proposition 2. For any (i, j) ∈ I ×J , suppose that ψlij (τ) for any lij ∈ Lij is a step function on Θ

with jumps at τhij
for all hij ∈ Hij. Then, for any uij ∈ Umpre

ij , there exists a piecewise linear marginal

utility function ũij ∈ Ũij with ũ(τhij
) = u(τhij

) for all hij ∈ Hij, such that ũij ∈ Ũmpre
ij . Specifically,

such ũ can be constructed by

ũij(t) =
∑

hij∈Hij

(
uij(τhij−1) +

uij(τhij
)− uij(τhij−1)

τhij
− τhij−1

(t− τhij−1)

)
1
{
t ∈ (τhij−1, τhij

]
}
, ∀t ∈ Θ. (10)

By Proposition 2, for any (i, j) ∈ I × J , we can introduce the approximated first-stage problem

of OPA-PR

ρ̃ij = min
ũij∈Ũij

∑
e∈E

peũij(h(x, ξe)). (11)

where Ũij := Umon ∩ Unor ∩ Uconc ∩ U lip ∩ Ũmpre
ij . In Section 3.4, we will analyze the error bounds on

the optimal value and solution of both stages of OPA-PR introduced by PLA.

We then derive a tractable reformulation of the approximated first-stage problem in Equation (11),

which has infinite dimensions. The following lemma states that, given a set of points in Rn × R, a
concave function mapping from Rn to R can be expressed as the upper envelope of linear functions,

forming a piecewise linear concave function that passes through some of those points.
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Lemma 1 (Haskell et al. (2018)). Let f : Rn → R and ⟨·⟩ denote the Euclidean inner product. The

following statement holds.

(1) f is concave if and only if

f(x) = inf
i∈I

gi(x), ∀x ∈ domf,

where I is an index set, potentially infinite, and gi(x) = ⟨ai,x⟩ + bi for all i ∈ I, representing the

support function of f at x for any a ∈ ∂f(x).

(2) For any finite set O ⊂ Rn and values {vo}o∈O ⊂ R, the function f̂ : Rn → R defined by

f̂(x) = min
a,b

{⟨a,x⟩+ b : ⟨a,o⟩+ b ≥ vo, ∀o ∈ O}

is concave. Furthermore, f̂ ≤ f̃ holds over Rn for all increasing and concave functions f̃ with f̃(o) ≥
vo.

The following proposition gives the tractable reformulation of Equation (11) based on Lemma

1. Our result shows that Equation (11) can be solved by a finite-dimensional linear programming,

involving 2(R+ E) variables and 4R+ ER+ L+ E constraints without nonnegativity constraints.

Proposition 3. For any (i, j) ∈ I×J , Equation (11), satisfying Assumptions 1-5, can be reformulated

as the following minimization problem in Equation (12), which is a finite linear programming problem

given x and ξ, where h(x, ξ) is affine in x.

min
a,b,y,µ

∑
e∈E

pe(aeh(x, ξe) + be) (12a)

s.t. yhij
− yhij−1 = µhij−1(τhij

− τhij−1) ∀hij ∈ Hij (12b)

yhij
− yhij−1 ≥ µhij

(τhij
− τhij−1) ∀hij ∈ Hij\{Hij} (12c)

0 ≤ µhij
≤ G ∀hij ∈ Hij ∪ {0}\{Hij} (12d)∑

hij∈Hij

µhij−1

∫ τhij

τhij−1

ψlij (τ)dt ≤ cl ∀lij ∈ Lij (12e)

aeτhij
+ be ≥ yhij

∀e ∈ E , hij ∈ Hij (12f)

y0 = 0, yR = 1 (12g)

ae ≥ 0 ∀e ∈ E (12h)

Given the optimal solution (a∗, b∗,y∗,µ∗), the worst-case marginal utility function is given by

ũ∗ij(t) =
∑

hij∈Hij

{
y∗hij

− y∗hij−1

τhij
− τhij−1

t+
τhij

y∗hij−1 − τhij−1y
∗
hij

τhij
− τhij−1

}
1
{
t ∈ (τhij−1, τhij

]
}
, ∀t ∈ Θ, (13)

with ũ∗ij(0) = 0 and ũ∗ij(R) = 1.
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By Proposition 3, we can derive the worst-case marginal utility functions in piecewise linear form

for all experts and attributes, which are then incorporated into the second-stage problem of OPA-PR

to determine the optimal decision weights.

3.3. Second-Stage Optimization: Decision Weights

This section introduces several ambiguity sets for attribute ranking parameters and derives the

corresponding tractable reformulation of the second-stage optimization of OPA-PR.

Let Ũ∗
i ∈ RJ×R, where Ũijr =

∫ R−r+1
0 dũ∗ij(x). The second-stage optimization deals with the

following problem

max
z̃i,w̃i∈W̄i

z̃i,

s.t. RŨ∗
i z̃i ≤ W̃is̃i, ∀s̃i ∈ Vi.

(14)

We primarily consider the following ambiguity sets for the attribute ranking parameters of the

second-stage problem in OPA: norm-, budget-, and conditional value-at-risk (CVaR)-based ambiguity

sets, which are the mainstream ambiguity sets considered in decision analysis.

Assumption 6 (Norm-based ambiguity set). The norm-based ambiguity set for the attribute

ranking s̃ is defined by

Vnorm :=
{
s̃ ∈ RJR : ∥Σ− 1

2 (s̃− µ)∥2 ≤ δ
}
,

where µ is the mean of s across experts, and Σ is the covariance matrix of s across experts, which is

assumed to be Σ ≻ 0.

The norm-based ambiguity set represents the variation regions defined by the deviation of s̃ from

its mean µ across experts, transformed by the covariance matrix M, measured by distance metrics

∥ · ∥2. The mean represents the central position of the attribute ranking, while the covariance matrix

characterizes the dispersion.

Assumption 7 (Budget-based ambiguity set). The budget-based ambiguity set for the attribute

ranking s̃ is defined by

Vbudget :=

s̃ ∈ RJR : |s̃g − µg| ≤ γg, ∀g ∈ G,
∑
g∈G

|s̃g − µg|
γg

≤ Γ, |G| = JR

 .

The budget-based ambiguity set can be regarded as the intersection of ∥ · ∥∞ and ∥ · ∥1, which is

less conservative as it excludes rare events compared to interval ambiguity set.

17



Assumption 8 (CVaR-based ambiguity set). The CVaR-based ambiguity set for attribute rank-

ing s̃ is defined by

VCVaR :=

{
s̃ ∈ RJR : ∃η ∈ RI , s̃ =

∑
i∈I

ηisi,
∑
i∈I

ηi = 1, 0 ≤ ηi ≤
1

αI
, ∀i ∈ I

}
,

where α ∈ (0, 1].

In the CVaR-based ambiguity set, attribute rankings are determined by the convex combination

of ranking parameters provided by experts. The upper bound of the weights is related to CVaR, with

α controlling the tail risk. A smaller α results in a larger ambiguity set and a more robust solution.

We next derive the tractable reformulation of the second-stage problem of OPA-PR under the

above discussed ambiguity sets for attribute rankings.

Proposition 4. For any i ∈ I, the second-stage problem of OPA-PR with an ambiguity set for

attribute rankings that satisfies Assumption 6 is equivalent to the following second order cone pro-

gramming

max
w̃i∈W̄i,z̃i,λi

z̃i,

s.t. (∥(Σ
1
2 )⊤w̃i∥2)e ≤ W̃iµ−RŨ∗

i z̃i
δi

.

(15)

Proposition 5. For any i ∈ I, the second-stage problem of OPA-PR with an ambiguity set for

attribute rankings that satisfies Assumption 7 is equivalent to the following linear programming

max
w̃i∈W̄i,z̃i,y1,y2,λ,ν

z̃i,

s.t. (y1 + y2)
⊤µ+ (λ⊤e+ Γν)e ≤ −RŨ∗

i z̃i,

Y1 +Y2 = −W̃i,

λ ≥ −∆−1
i y1,

λ ≥ ∆−1
i y1,

νe ≥ −∆−1
i y2,

νe ≥ ∆−1
i y2,

(16)

where Y1 = diag(y111, . . . , y11R, y121, . . . , y1JR), Y2 = diag(y211, . . . , y21R, y221, . . . , y2JR), and

∆i = diag(1/γi1, . . . , 1/γi1︸ ︷︷ ︸
R elements

, . . . , 1/γiJ , . . . , 1/γiJ︸ ︷︷ ︸
R elements

).
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Proposition 6. For any i ∈ I, the second-stage problem of OPA-PR with an ambiguity set for

attribute rankings that satisfies Assumption 8 is equivalent to the following linear programming

max
w̃i∈W̄i,z̃i,λ,β

z̃i,

s.t.

(
λ− 1

αI

∑
i′∈I

βi′

)
e ≥ RŨ∗

i z̃i,

W̃isi′ + (−λ+ βi′)e ≥ 0, ∀i′ ∈ I,

β ≥ 0.

(17)

The optimal weights w̃∗
ijr are then mapped to w∗

ijk according to alternative rankings under at-

tributes by experts, with Equation (5) calculating the final weights for experts, attributes, and alter-

natives. Notably, when the worst-case utilities Ũ∗
ijr for all experts and attributes (i, j) ∈ I ×J reduce

to rank order centroid weights, and the ambiguity set for attribute rankings are discrete scenario or

box-based, OPA-PR recovers the OPA-R proposed by Mahmoudi et al. (2022a).

The following theorem gives the decomposability of the optimal solution of OPA-PR, given the

worst-case attribute ranking parameters. Let s∗i = argmins̃i∈Vi W̄is̃i, which can be obtained from the

dual optimal solution. For further details about recoverying the primal via the dual, we refer readers

to Chapter 5 of Boyd and Vandenberghe (2004).

Theorem 1. For any i ∈ I, the optimal weights for the second-stage problem of OPA-PR is given by

w∗
ijr = wWR

ij wWU
ijr , ∀(j, r) ∈ J ×R, (18)

where

wWR
ij =

1

s∗ij
∑

j∈J
1
s∗ij

, ∀j ∈ J ,

and

wWU
ijr =

Ũ∗
ijr

∑
j∈J

1

s∗ij

/∑
j∈J

∑
r∈R

Ũ∗
ijr

s∗ij

 , ∀(j, r) ∈ J ×R,

with
∑

j∈J w
WR
ij = 1 and

∑
j∈J

∑
r∈Rw

WU
ijr = 1.

Theorem 1 demonstrates the decomposability of the second-stage solution of OPA-PR, where the

two weight components are normalized and depend solely on the worst-case attribute rankings and

worst-case utilities. It further suggests that, once the worst-case attribute ranking and worst-case

utilities are determined, the optimal weights for the second-stage problem of OPA-PR can be directly

computed using Equation (18), providing a closed-form solution.
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3.4. Error Bound

This section analyzes the error bounds of the ambiguity set approximation of marginal utility

functions on the optimal value for the both stages of OPA-PR to provide a theoretical basis for the

application.

Compared to the first-stage error bound of OPA-PR, our primary interest lies in identifying which

forms of partial preference information can minimize the first-stage error, as this can inform the design

of more effective preference elicitation strategies for DMs. The following proposition shows that the

PLA of the first-stage problem in OPA-PR introduces no additional approximation errors when the

utility functions in the ambiguity set are concave and the non-differentiable turning points on Θ

corresponds to discrete outcomes.

Proposition 7. For any (i, j) ∈ I × J , if ψlij (τ) for all lij ∈ Lij are step functions over Θ with

jumps at τhij
for hij ∈ Hij, then ρ̃ij = ρij.

The following proposition gives a equivalent representation of the PLA of the ambiguity sets for

marginal utility functions, which is obtained from the step-like approximation of the partial preference

information in moment-type preference elicitation set.

Proposition 8. For any (i, j) ∈ I × J , let uij ∈ Uij and ũij be the corresponding piecewise linear

approximation defined as Equation (10). Then, the step-like approximation of ψlij for lij ∈ Lij,

denoted as ψ̃lij , resulting from the turning points at τhij
for hij ∈ H such that ψ̃lij (τhij

) = ψl(τhij
) is

equivalent to the piecewise linear approximation of uij.

Propositions 4 and 5 provide insights for designing effective preference elicitation strategies in

OPA-PR: we can avoid approximation errors by properly eliciting the preferences with the step-

like characteristic. Notably, as we discussed before, the partial preference information derived from

deterministic utility comparison (Example 1) and stochastic lottery comparison with two lotteries

(Example 2) is the step function. These findings will aid in developing preference elicitation strategies

for OPA-PR, presented in Section 3.5.

We next quantify the impact of the elicited worst-case marginal utility functions with PLA in

the first-stage problem on the optimal solution of the second-stage problem of OPA-PR. To achieve

this, it suffices to analyze the difference between ũ∗ and u∗ and its impact on the optimal solution,

as the PLA solely affects the structure of ambiguity set for utility functions, especially moment-type

preference elicitation. Notably, PLA has impact on the second-stage problem even when no extra

error is introduced in the first-stage problem. This is because the second-stage problem relies on

the arguments from the first-stage minimization problem (i.e., ũ∗ij for all (i, j) ∈ Y), rather than the

optimal value ρ̃ij . We begin by introducing the pseudo-metric for measuring the disparity between

utility functions.

20



Definition 2. Let F be a set of measurable functions defined over Θ. For any u1, u2 ∈ U , the

pseudo-metric between u1 and u2 is defined as

dF (u1, u2) := sup
f∈F

| ⟨f, u1⟩ − ⟨f, u2⟩ |,

where ⟨·⟩ denotes the Euclidean inner product.

It is easy to verify that dF (u1, u2) = 0 if and only if ⟨f, u1⟩ = ⟨f, u2⟩ for all f ∈ F . Based on the

pseudo-metric, the following lemma provides the upper bound for the PLA errors between marginal

utility functions.

Lemma 2. Let F := {f = IΘ(·)}, where IΘ(·) is the indicator function with domain Θ. For any

(i, j) ∈ I × J , the optimal u∗ij ∈ Uij is G-Lipschitz continuous over Θ, and ũ∗ij represents the corre-

sponding piecewise linear approximation defined as Equation (10). Then

dF (u∗ij , ũ
∗
ij) = sup

τ∈Θ

∣∣ũ∗ij(τ)− u∗ij(τ)
∣∣ ≤ Gζij , (19)

where ζij = maxhij∈Hij
(τhij

− τhij−1) and G ≥ 1/R.

With Lemma 2, we can quantify the error bound on the optimal solution of the second-stage

problem in OPA-PR originating from the PLA of the elicited worst-case marginal utility functions.

Consider the following dual problem of the second-stage problem with utilities derived from the un-

approximated marginal utility functions for any i ∈ I with the dual variable θi ∈ R and λi ∈ RJ×R

min
θi,λi

θi,

s.t. Λis̃
∗
i ≤ θie

⊤,

R(U∗
i )

⊤λi = 1,

λi ≥ 0,

(20)

where Λi = diag(λi11, . . . , λi1R, λi21, . . . , λiJR).

Theorem 2. For any (i, j) ∈ I × J , assume that F := {f = IΘ(·)} and u∗ij ∈ Uij is G-Lipschitz

continuous over Θ and ũ∗ij is corresponding piecewise linear approximation defined as Equation (10).

Let (θ∗i ,λ
∗
i ) denote the optimal solution of the dual problem of Equation (20). Let (z̃∗i , w̃

∗
i ) and (z∗i , w̄

∗
i )

denote the optimal solutions of the second-stage problem of OPA-PR, corresponding to unapproximated

and approximated utilities, respectively. Then,

(1−RGζij(λ
∗
i )

⊤e)z∗i ≤ z̃∗i ≤ 1

1 +RGζij(λ∗
i )

⊤e
z∗i , (21)

and for all (j, r) ∈ J ×R,

(1−RGζij(λ
∗
i )

⊤e)RŨ∗
ijr

s̃∗ij
z∗i ≤ w̃∗

ijr ≤
RŨ∗

ijr

(1 +RGζij(λ∗
i )

⊤e)s̃∗ij
z∗i , (22)

where ζij = maxhij∈Hij
(τhij

− τhij−1).
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3.5. Preference Elicitation Strategy Design

This section focuses on the preference elicitation strategy relevant to the first-stage problem of

OPA-PR. As discussed in Section 3.4, the way to elicit expert preferences directly influences the PLA

errors of the ambiguity set for marginal utility functions. Thus, we utilize the stochastic pairwise

lottery comparisons, which provide step-like preference information covering the deterministic utility

comparisons, without introducing additional errors in the PLA as detailed in Propositions 7 and 8.

Specifically, experts are asked to determine the certainty equivalent of pairwise lotteries

Z1 =

{
r1, with probability 1− p,

r3, with probability p,
and Z2 = r2.

For any (i, j) ∈ I × J , the question lij is characterized by four parameters r1lij ≤ r2lij ≤ r3lij and pij

with the corresponding ψlij given by

ψlij (τ) = (1− pij)1[r1lij ,R](τ) + pij1[r3lij ,R](τ)− 1I[
r2lij

,R
](τ).

If the utility function is normalized such that ũij(r
1
lij
) = 0 and ũij(r

3
lij
) = 1, the question simplifies to

determining whether ũij(r
2
lij
) ≥ pij or not. Thus, the key is how to determine the probability pij .

In the following, we utilize the random utility split scheme to select these four parameters (Arm-

bruster and Delage, 2015). We first determine the number of questions Lij , from which the number

of breakpoints is 3Lij + 2 ≤ R.

• Initialization: Set lij = 0.

• Step 1: Choose r1lij and r3lij uniformly from the ranking set R = {1, 2, . . . , R} and r2lij uniformly

from the rankings in [r1lij , r
3
lij
].

• Step 2: Normalize the utility function such that ũij(r
1
lij
) = 0 and ũij(r

3
lij
) = 1. Then, let

Cij := [Cij , C̄ij ] :=
[
minũij∈Ũij

ũij(r
2
lij
),maxũij∈Ũij

ũij(r
2
lij
)
]
and pij =

(
Cij + C̄ij

)
/2. Taking

the elicitation of the minimum Cij as an example, which is solved by the following minimization
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problem

min
a⪰0,b

∑
hij∈Hij

(ahij
r2lij + bhij

)1(τhij−1,τhij ]
(r2lij ),

s.t. ar1lij−1r
1
lij

+ br1lij−1 = 0,

ar3lij−1r
3
lij

+ br3lij−1 = 1,

ahij−1τhij
+ bhij−1 = ahij

τhij
+ bhij

, ∀hij ∈ Hij ,

ahij
− ahij−1 ≤ 0, ∀hij ∈ Hij ,∑

hij∈Hij

ahij−1

∫ τhij−1

τhij

ψlij (τ)dt ≤ clij , ∀lij ∈ Lij ,

ahij−1 ≤ G ∀hij ∈ Hij .

Similarly, C̄ij can be determined by maximizing the above problem.

• Step 3: Let lij = lij + 1 and ψlij (τ) = (1 − pij)1[r1lij ,R](τ) + pij1[r3lij ,R](τ) − 1[r2lij ,R](τ). If

pij ≥ ũij(r
2
lij
), which is equivalent to

∫
Θ−ψlij (τ)dũij(τ) ≤ 0, then the expert prefers Z1 to Z2.

We then include the constraint
∫
Θ−ψlij (τ)dũij(τ) ≤ 0 in the ambiguity set Ũij . Otherwise, add∫

Θ ψlij (τ)dũij(τ) ≤ 0. Return to Step 1 until lij = Lij .

Step 1 generates the lottery and certainty equivalent for pairwise comparisons. Step 2 determines

the probability pij at the midpoint of interval Cij , which means the true utility function value at r2lij
lies in either the upper or lower half of interval Cij , reducing the ambiguity set for possible utility

functions by half. Step 3 requires the expert to select the lottery and certainty equivalent to add

the constraints. Notably, when the expert specifies the nominal utility function, the modulus G of

Lipschitz continuity modulus can be derived from its first-order derivative.

Remark 1. It is important to acknowledge that preference inconsistencies may occur during the elic-

itation process, arising from factors such as violations of expected utility theory axioms or contamina-

tion of preference information (Guo et al., 2024). In Appendix A, we present extended formulations

for two types of preference inconsistencies commonly discussed in literature (Guo et al., 2024; Wu

et al., 2022): weight disparity error and erroneous elicitation.

4. Numerical Experiments

4.1. Experiment Setup

In this section, we conduct numerical experiments on OPA-PR, applied to the emergency supplier

selection problem in the context of the 7.21 mega-rainstorm disaster in Zhengzhou, China. We focus
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on the in-disaster scenario, which contrasts with pre-disaster conditions. Unlike the pre-disaster set-

ting, the in-disaster phase demands rapid decision-making due to the high urgency and uncertainty

that typically follow such events. This scenario challenges traditional supplier selection as the unpre-

dictability and complexity of disasters often make preselected suppliers inadequate (Wang et al., 2022).

In response, the in-disaster emergency supplier selection problem must adapt by relying on partial

preference information and accommodating the risk preferences of DM, significantly influencing out-

comes under these conditions. Overall, the in-disaster emergency supplier selection problem, marked

by urgency and complexity in decision-making, demonstrates the applicability and effectiveness of

OPA-PR, aligning with the proposed decision framework and providing an ideal testing ground.

There are ten emergency suppliers (labeled A1 to A10) available, each presenting unique character-

istics suited for flood relief efforts. Some provide stable supply chains and rapid response capabilities

at higher costs, while others leverage strategic locations and efficient transport networks to improve

emergency effectiveness. Six attributes are identified to evaluate these suppliers: response speed (C1),

delivery reliability (C2), geographic coverage (C3), operational sustainability (C4), collaborative expe-

rience and credibility (C5), and supply cost (C6). A single-expert decision-making process is adopted

in this study without loss of generality, as Corollary 1 shows that the multi-expert OPA model can

be equivalently reduced to a single-expert OPA model followed by aggregation using rank recipro-

cal weights. This not only simplifies the analysis but also yields results that are more intuitive and

interpretable. The expert ranks each attribute and supplier, with the ranking data available in the

Online Supplemental Material. The selection of the ambiguity set parameter for OPA-PR follows the

method outlined in relevant classic textbooks. For the norm-based ambiguity set, let δ = 0.00795; for

the budget-based ambiguity set, set γ = 1 and Γ = 0.875; and for the CVaR-based ambiguity set, set

α = 0.95. For simplicity, OPA-PR with norm-, budget-, and CVaR-based ambiguity sets are referred

to as OPA-PR(N), OPA-PR(B), and OPA-PR(C), respectively, in the numerical experiments.

The numerical experiments are structured into three parts: the case test, the sensitivity test, and

the comparison test. The case test is designed to demonstrate the implementation of our proposed

approach and provide an interpretable explanation of the case results. The sensitivity test assesses

the effect of parameter variations on the outcomes. The comparison test contrasts the results with

the original OPA model to assess the effects of the extensions on the outcomes.

4.2. Experiment Results

This section analyzes the case results of OPA-PR using the collected data. Figure 1 illustrates

the worst-case marginal utilities of ranked alternatives under various attributes based on partial pref-

erence information obtained through the scheme in Section 3.5, which is the first-stage outcome of

OPA-PR. The results indicate that the worst-case marginal utilities of ranked alternatives varies
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across attributes based on the partial preference information, even when the expert responds to iden-

tical utility elicitation questionnaires for different attributes. This highlights the need to customize

the preferences of expert in decision-making processes. Furthermore, the worst-case marginal utility

function reflects a risk-averse preference, contrasting with the original OPA model using rank order

centroid weights, which suggests a risk-seeking preference, extending beyond the less common single

risk-seeking preference in practice.

Figure 1: Worst-case marginal utility function (reversed rankings) for ranked alternatives across attributes

The second-stage problem of OPA-PR under the three ambiguity sets is solved using the elicited

marginal utility functions. The optimal weight disparities for OPA-PR(N), OPA-PR(B), and OPA-

PR(C) are consistent, with a value of 0.0025. Figures 2 and 3 present the optimal attribute and

alternative weights, showing nearly identical results result from the same optimal weight disparities.

Regarding attribute weights, OPA-PR(C) exhibits greater differences across attributes than OPA-

PR(N) and OPA-PR(B), which show the same attribute weights. C1 is the most significant for all

three, with a weight of 0.3064. For OPA-PR(N) and OPA-PR(B), C3 ranks second with a weight

of 0.1794, followed by C6, C2, C5, and C4, with weights of 0.1588, 0.1502, 0.1175, and 0.0876,

respectively. In contrast, OPA-PR(C) assigns weights of 0.1714 to C2, C3, and C6, followed by 0.0857

for C5 and 0.0571 for C4. The alternative weights for OPA-PR(C) are all identical, each valued at

0.1000, indicating a degenerate solution and suggesting its inapplicability to this scenario. Due to

its poor performance, OPA-PR(C) will be excluded from the sensitivity and comparative analysis for

further testing. For OPA-PR(N) and OPA-PR(B), the alternative ranking remains consistent. The

top six alternatives are A5 (0.1038), A6 (0.1033), A7 (0.1020), A8 (0.1020), and A2 (0.1017), with A5

being the most favorable due to its performance in C1, C2, C4, and C5.
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Figure 2: Optimal weights for attributes

Figure 3: Optimal weights for alternatives

4.3. Sensitivity Analysis

This section performs a sensitivity analysis on OPA-PR, focusing on the perturbation of alternative

rankings and size parameters of attribute ranking ambiguity sets, particularly examining the sensitivity

of alternative rankings to assess the value of the prescribed alternative in the perturbed version of the

perceived ranking.

For the sensitivity analysis of alternative rankings, we generate the samples from a normal distri-

bution using the expert-provided alternative rankings as the mean, with standard deviations of 1/3,

1/2, and 2/3. These standard deviations are based on the fact that approximately 99.7% of the data

within a normal distribution falls within three standard deviations of the mean, allowing estimation

of the standard deviations using the maximum and minimum values. A standard deviation of c/3

results in a maximum range of 2c, i.e., (mean−c,mean+c), with a radius of c. Thus, a standard devi-

ation of 1/3 represents alternative ranking perturbation without reversal, while 1/2 and 2/3 indicate
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perturbation with ranking reversal. The stopping condition is defined as

∥(argmax
k∈K

pmk1, . . . , argmax
k∈K

pmkR)
⊤ − (k∗1, . . . , k

∗
R)

⊤∥2 = 0 and ∥(max
k∈K

pmk1, . . . ,max
k∈K

pmkR)
⊤∥2 ≥ d,

with a maximum of 1000 iterations, where m denotes the iteration step, d is a given constant, k∗r

denotes the index of the r-th ranked alternative from the unperturbed OPA-PR, and pmkr represents

the probability of alternative k being ranked r for all k ∈ K and r ∈ R under iteration stepm. The first

condition ensures that the final ranking result converges to the mean-based alternative ranking result

after a specified number of iterations. The second condition requires the probability of convergence to

meet a minimum threshold. Let d = 1.5811, derived from ∥K(0.5, . . . , 0.5)⊤∥2. To make the analysis

statistically meaningful, we set the minimum iterations to 50.

Table 1 displays the number of iterations required to meet the stopping condition under different

perturbation radii for alternative rankings, along with the final ranking result and the corresponding

probabilities. At a radius of 1, both OPA-PR(N) and OPA-PR(B) converge within approximately 50

iterations. With a radius of 1.5, convergence occurs within 200 iterations. However, at a radius of 2, the

maximum iteration limit is reached without convergence, primarily because the norm of probability

vector does not meet the given minimum threshold. Regarding ranking results, both OPA-PR(N)

and OPA-PR(B) produce consistent rankings across radii, all converging to the mean-based ranking

result. Additionally, as the perturbation radius increases, the probability of an alternative achieving

the optimal ranking decreases. Figure 4 shows the alternative weights across various perturbation radii,

with a consistent vertical axis for comparison. The weight distributions follow a normal distribution,

in line with the sampling rule. As the radius increases, weight variability becomes more noticeable.

It is important to note that due to the stochastic nature of the simulation, slight variations may

occur between different runs. Nevertheless, as iterations increase, the final ranking result of OPA-PR

converge to the mean-based alternative ranking result, reinforcing the validity of OPA-PR.

Table 1: Ranking results of alternative ranking perturbations

Model Radius Iteration
1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

A5 A6 A7 A8 A2 A4 A1 A3 A9 A10

OPA-PR(N)

1 56 75% 72% 33% 40% 33% 51% 54% 77% 60% 67%

1.5 198 63% 57% 40% 36% 31% 46% 51% 56% 51% 60%

2 1000 59% 46% 28% 34% 25% 39% 44% 49% 48% 54%

OPA-PR(B)

1 50 71% 71% 45% 41% 31% 47% 57% 78% 57% 75%

1.5 143 60% 51% 36% 36% 28% 49% 51% 59% 58% 63%

2 1000 58% 45% 27% 34% 30% 40% 48% 48% 47% 52%
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(a) OPA-PR(N) with radius 1 (b) OPA-PR(N) with radius 1.5 (c) OPA-PR(N) with radius 2

(d) OPA-PR(B) with radius 1 (e) OPA-PR(B) with radius 1.5 (f) OPA-PR(B) with radius 2

Figure 4: Weight results of alternative ranking perturbations

To evaluate the impact of the size parameters of attribtue ranking ambiguity sets on the weight re-

sults, we perturbate the size parameters by ±5%, ±10%, ±15%, and ±20%, with the results shown in

Table 2 and Figure 5. Table 2 shows that the weight disparities for both OPA-PR(N) and OPA-PR(B)

decreases linearly as the size parameters of ambiguity sets increase, with OPA-PR(B) being more

sensitive to size parameter perturbations than OPA-PR(N). The final ranking results for attributes

and alternatives remain consistent across different perturbation scenarios. The attribute weights for

both OPA-PR(N) and OPA-PR(B) are almost identical in all perturbation scenarios. However, the

alternative weights for OPA-PR(N) and OPA-PR(B) reveal that as the ambiguity set size parame-

ters decrease, variations in optimal weights for alternatives increase. An interesting phenomenon is

observed, where the weights of higher-ranked alternatives increase, while those of lower-ranked alter-

natives decrease. This suggests that as uncertainty in attribute rankings reduces (i.e., the ambiguity

set size decreases), the final weights between alternatives become more differentiated, providing more

information to support less conservative decisions.
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Table 2: Optimal weight disparities across perturbated size parameter

Model Value -20% -15% -10% -5% 0% 5% 10% 15% 20%

OPA-PR(N)
z∗ 0.0033 0.0031 0.0029 0.0027 0.0025 0.0023 0.0021 0.0019 0.0017

Ratio 131% 123% 116% 108% 100% 92% 84% 77% 69%

OPA-PR(B)
z∗ 0.0038 0.0035 0.0032 0.0029 0.0025 0.0022 0.0018 0.0015 0.0011

Ratio 151% 139% 126% 113% 100% 86% 73% 59% 44%

4.4. Comparison Analysis

This section compares OPA-PR by examining its optimal weights for ranked alternatives across

attributes against those of the original OPA. The OPA-PR outcomes are presented in three forms: the

original OPA-PR (OPA-PR(B) and OPA-PR(N)), OPA-PR with expert-provided attribute rankings

(OPA-PR(DR)), and OPA-PR with ROC weights for ranked alternatives (OPA-PR(B-ROC) and

OPA-PR(N-ROC)). For the original OPA, expert-provided attribute rankings are directly used as

input. The comparison with other MARS methods is omitted for two reasons: first, these methods

are based on different assumptions and axioms; second, they use parameters with different meanings,

making direct ranking comparisons unjustified. Comparing the proposed approach with the original

model provides a clearer understanding of how its extension influences the results.

Figure 6 shows the optimal weight results for each method. The results indicate that the optimal

weights for ranked alternatives in OPA span the widest range across all attributes. Additionally,

the optimal weight curves for OPA-PR(B), OPA-PR(N), OPA-PR(B-ROC), and OPA-PR(N-ROC)

are convex, as they use ROC weights for ranked alternatives, reflecting a risk-seeking preference.

In contrast, methods based on elicited worst-case marginal utilities for ranked alternatives, such as

OPA-PR(B), OPA-PR(N), and OPA-PR(DR), exhibit concave optimal weight curves, indicating risk

aversion. We find that OPA-PR’s robustness against preference and parametric uncertainty leads to a

tendency toward balance. This suggests that when DM lacks sufficient and precise information, he/she

is more likely to minimize attribute differences between alternatives, thus avoiding more aggressive

decisions. We also calculated the standard deviations of the optimal weight results for each method,

yielding the following outcomes: OPA (0.0207)>OPA-PR(N-ROC) (0.0198)>OPA-PR(DR) (0.0122)

> OPA-PR(B-ROC) (0.0079) > OPA-PR(N) (0.0072) = OPA-PR(B) (0.0072). These results show

that methods using ROC weights have higher standard deviations for optimized weights than those

using elicited worst-case marginal utilities (OPA v.s. OPA-PR, OPA-PR(B-ROC) v.s. OPA-PR(B),

and OPA-PR(N-ROC) v.s. OPA-PR(N)). Furthermore, under dual risk aversion toward preference

and parametric uncertainty, OPA-PR(B-ROC) and OPA-PR(N) exhibit the most conservative re-

sults. Overall, even for the same problem, differences in risk preferences lead to varying outcomes,
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(a) Attribute weights of OPA-PR(N) (b) Alternative weights of OPA-PR(N)

(c) Attribute weights of OPA-PR(B) (d) Alternative weights of OPA-PR(B)

Figure 5: Weight results of of size parameter perturbations

emphasizing the need to extend OPA in terms of preference and parametric uncertainty.
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(a) C1 (b) C2 (c) C3

(d) C4 (e) C5 (f) C6

Figure 6: Optimal weights for ranked alternatives across attributes

5. Concluding Remarks

By extending the traditional OPA to address parametric and preference uncertainty, the proposed

OPA-PR offers a robust MARS framework. It employs an estimate-then-optimize two-stage procedure.

In the first stage, it elicited the worst-case utility functions from ambiguity sets of utility preferences,

incorporating properties such as monotonicity, normalization, and moment-based preference elicita-

tion, thereby providing a more comprehensive representation of utility preferences. In the second

stage, it optimizes decision weights under worst-case ranking parameters from various ambiguity sets

(norm-, budget-, and CVaR-based), further strengthening the robustness of the decision-making pro-

cess. We present a tractable reformulation of both stages. Notably, the PLA is utilized to approximate

the utility preference ambiguity sets to derive worst-case marginal utility functions, and thus the error

bounds for both stages of OPA-PR are analyzed. We demonstrate that PLA introduces no addi-

tional errors under specific preference elicitation methods (such as deterministic utility comparison

and stochastic lottery comparison for moment-based preferences), which provides the foundation for

designing the preference elicitation strategy.
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The effectiveness of the proposed approach is validated through numerical experiments, including

case studies, sensitivity analysis, and comparison tests. The case results indicate that OPA-PR with

norm- and budget-based ambiguity sets performs well, while OPA-PR with the CVaR-based ambiguity

set is less effective at differentiating weights for ranked alternatives. Sensitivity analysis of alternative

ranking perturbations, assuming normal distributions with the mean of expert-provided alternative

rankings and standard deviations from perturbation ranges, shows that the final rankings converge to

those derived from the unperturbed problem. Sensitivity analysis of the ambiguity set size parameter

reveals the common trend that larger sets lead to more conservative weights. Comparison results

demonstrate that the proposed approach outperforms the original OPA model in terms of robustness

to parametric and preference ambiguity, resulting in more conservative weight outcomes.

While the current study focuses on a particular context of decision-making, we recognize the need

for further exploration in diverse scenarios to validate the generalizability of the proposed approach.

Future research could extend this work by incorporating different types of ambiguity sets for ranking

parameters, expanding the applicability of OPA-PR in various domains. Additionally, a promising

direction is to investigate how expert preferences can be elicited to design the size parameters for

ambiguity sets more effectively. Further integration of advanced operations research techniques, such

as distributionally robust optimization and stochastic contextual optimization, within the artificial

intelligence framework, could offer even more robust decision-making tools. Finally, expanding OPA

to accommodate model misspecifications presents a crucial avenue for future work, as this could

provide valuable insights for real-world decision-making applications where expert judgements may

not always hold true.
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Appendix A. Extended Formulation Considering Preference Inconsistency

In this section, we discuss the potential preference inconsistency for the preference elicitation pro-

cess, which may arise from factors such as misalignment with expected utility theory axioms or con-

taminated preference information. We examine three interpretable types of preference inconsistency,

including weight disparity error and erroneous elicitation, along with their corresponding modified

formulations.

First, we assume there are errors in weight disparity, indicating that the optimized weight disparity

scalar does not satisfy all weight disparity constraints. For any i ∈ I, the term W̄is̃i is modified to

W̄is̃i + γi, where γi ∈ RJ×R denotes the error tolerance for expert i. An error budget Γi ≥ 0

is introduced to regulate the total error, ensuring consistency within the model. The cumulative

inconsistency is quantified by the total error term e⊤γi ≤ Γ, which enforces the feasibility of the

second-stage problem of OPA-PR. The modified formulation is as follows

max
zi,w̄i,γi

zi

s.t. RU∗
i zi ≤ W̄is̃i + γi, ∀s̃i ∈ Vi,

e⊤w̄i = 1,

e⊤γi ≤ Γ,

γi ≥ 0, w̄i ≥ 0,

(A.1)

where γi is treated as a decision variable. The tolerated total error can be designed based on the

optimal value of z̃∗
i from the original formulation of OPA-PR. The tractable reformulation of Equation

(A.1) can be derived by the symmetric argument as the proofs of Propositions 4-6.

When addressing erroneous elicitation, we can selectively relax a portion of the preference elicita-

tion constraints in the second-stage problem of OPA-PR. In this case, we assume that at least 1− θij

of the R dominance relations under each expert and attribute are correct, implying that expert i can

give incorrect responses in at most θijR relations on attribute j and θi ∈ RJ . We introduce binary

variables ϑi ∈ {0, 1}J×R for any i ∈ I, taking the value of 1 if expert i is incorrect about the ranking

relation r on attribute j. The modified formulation is as follows

max
zi,w̄i,γi

zi

s.t. RU∗
i zi ≤ W̄is̃i +Mϑi, ∀s̃i ∈ Vi,

M(e⊤ − ϑi) +RU∗
i zi ≥ W̄is̃i, ∀s̃i ∈ Vi,

e⊤w̄i = 1,

Ēϑi ≤ Rθi,

ϑi ∈ {0, 1}J×R, w̄i ≥ 0,

(A.2)
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where M is a large constant and

Ē =


ē⊤

. . .

ē⊤

 ,
and ē is an R-dimensional vector of all ones. The tractable reformulation of Equation (A.2) can

be derived by the symmetric argument as the proofs of Propositions 4-6 and then solved by the

cutting-plane method.

Appendix B. Technical Proofs

Appendix B.1. Proof of Proposition 2

For any (i, j) ∈ I × J , given that ψlij (τ) on τ ∈ Θ is a step function with jumps at τhij
for all

hij ∈ Hij , we have∫
Θ
ψlij (τ)duij(τ) =

∑
hij∈Hij

ψlij (τ
′
hij

)(uij(τhij
)− uij(τhij−1)) =

∫
Θ
ψlij (τ)dũij(τ),

where τ ′hij
∈ (τhij−1, τhij

] and the last equality follows from the fact that the integral only involves the

value of uij at these jumps.

Appendix B.2. Proof of Proposition 3

We first divide the set of marginal utility functions based on their values at rankings on Θ for any

(i, j) ∈ I×J , denoted as Uij(y) := {uij : uij(τhij
) = yhij

,∀hij ∈ Hij}. Then, we have Uij(y)∩Uconc ̸=
∅, which yields Equations (12b) and (12c). Equations (12b) and (12c) express the concavity property

by the first order condition, yhij
− yhij−1 = µhij−1(τhij

− τhij−1) and µhij
≤ µhij−1 for all hij ∈ Hij ,

where µhij
represents the subgradient at turning point hij . The left-hand side of Equation (12d)

characterizes monotonic increasing properties of marginal utility function, while the right-hand side

represents the Lipschitz continuity with the modulus being bounded by G. Furthermore, Uij(y) ∩
Unor ̸= ∅, which are represented by Equation (12g). Equation (12e) details the elicited moment-type

preference information for each ranking points, which is derived from the fact that dũij(τhij−1) =

µhij−1 for all hij ∈ Hij . Since ũij(h(x, ξe)) in the objective function is concave, non-decreasing, and

affine in x, we can apply the support function for increasing concave functions, as outlined in Lemma

1, to approximate ũij(h(x, ξe)). This leads to the objective function formulation in Equation (12a)

and the constraints in Equations (12f) and (12h). The worst-case marginal utility function in Equation

(13) for any (i, j) ∈ I × J is directly obtained by Proposition 2.
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Appendix B.3. Proof of Proposition 4

Consider the inequality constraint in Equation (14) under Assumption 8, i.e.,

RŨ∗
i z̃i ≤ W̃is̃i, ∀s̃i ∈ Vnorm

i ⇔ RŨ∗
i z̃i ≤ min

s̃i∈Vnorm
i

{
W̃is̃i

}
.

Given any w̃i, we have

min
s̃i∈Vnorm

i

W̃is̃i,

= min
∥Σ− 1

2 (s̃i−µ)∥2≤δi

W̃is̃i,

= min
∥Σ− 1

2 (s̃i−µ)/δi∥2≤1

W̃is̃i.

Let ξi = Σ− 1
2 (s̃i − µ)/δi, so s̃i = µ+ δiΣ

1
2 ξi, which leads to

min
∥ξi∥2≤1

W̃i(µ+ δiΣ
1
2 ξi),

=− max
∥ξi∥2≤1

W̃i(−µ− δiΣ
1
2 ξi),

=W̃iµ− max
∥ξi∥2≤1

W̃i(−δiΣ
1
2 ξi),

=(W̃i)
⊤
g µ− δi∥(Σ

1
2 )⊤w̃i∥∗2,

=(W̃i)
⊤
g µ− δi∥(Σ

1
2 )⊤w̃i∥2,

where the fourth equality follows from the dual norm definition, and the fifth equality is due to the fact

that the dual norm of the ℓ2-norm is the ℓ2-norm itself. By reintegrating the inequality constraint,

Equation (14) under Assumption 6 is equivalent to the following second order cone programming

problem

max
w̃i∈W̄i,z̃i,λi

z̃i,

s.t. (∥(Σ
1
2 )⊤w̃i∥2)e ≤ W̃iµ−RŨ∗

i z̃i
δi

,

which gives the result in Proposition 4.

Appendix B.4. Proof of Proposition 5

Lemma 3 (Decompostion of support function). Let S1,S2, . . . ,Sn be closed convex sets, such that

∩i∈[n]ri(Si) ̸= ∅ and S = ∩i∈[n]Si. Then, we have

δ∗(x|S) = min

{
n∑

i=1

δ∗(yi | Si) |
n∑

i=1

yi = x

}
,

where δ∗(x|S) is the support function of S.
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By Lemma 3, we are ready to derive the tractable reformulation of the second-stage problem of

OPA-PR under Assumption 7. Consider the inequality constraint in Equation (14) under Assumption

7, i.e.,

RŨ∗
i z̃i ≤ W̃is̃i, ∀s̃i ∈ Vbudget

i ⇔ RŨ∗
i z̃i ≤ min

s̃i∈Vbudget
i

W̃is̃i.

Let

µ = (µ1, . . . , µ1︸ ︷︷ ︸
R elements

, . . . , µJ , . . . , µJ︸ ︷︷ ︸
R elements

)⊤ and ∆i = diag
( 1

γi1
, . . . ,

1

γi1︸ ︷︷ ︸
R elements

, . . . ,
1

γiJ
, . . .

1

γiJ︸ ︷︷ ︸
R elements

)
.

We can rewrite Vbudget
i into

Vbudget
i :=

{
s̃i ∈ RJR : ∥∆i(s̃i − µ)∥∞ ≤ 1, ∥∆i(s̃i − µ)∥1 ≤ Γ

}
:= V∞

i ∩ V1
i ,

where
V∞
i :=

{
s̃i ∈ RJR : ∥∆i(s̃i − µ)∥∞ ≤ 1

}
,

V1
i :=

{
s̃i ∈ RJR : ∥∆i(s̃i − µ)∥1 ≤ Γ

}
.

Notice that V∞
i and V1

i are closed convex sets and 0 ∈ ri(V∞
i )∩ri(V1

i ), then Lemma 3 holds. Then,

we have

max
s̃i∈Vbudget

i

−W̃is̃i ≤ −RŨ∗
i z̃i ⇔ δ∗(−W̃i|Vbudget

i ) ≤ −RŨ∗
i z̃i,

where δ∗(−(W̃i)g|Vbudget
i ) is the support function of Vbudget

i . By Lemma 3, we have

min
{
δ∗(y1|V∞

i ) + δ∗(y2|V1
i ) : Y1 +Y2 = −W̃i

}
≤ −R(Ũ∗

i )g z̃i, ∀g ∈ G,

where Y1 = diag(y111, . . . , y11R, y121, . . . , y1JR) and Y2 = diag(y211, . . . , y21R, y221, . . . , y2JR).

By the definition of support function and dual norm, we have

δ∗(y1|V∞
i ) = max

s̃i∈V∞
i

y⊤
1 s̃i = max

∥∆i(s̃i−µ)∥∞≤Γ
y⊤
1 s̃i = max

∥d1∥∞≤1
y⊤
1 (∆

−1
i d1 + µ),

= y⊤
1 µ+ max

∥d1∥∞≤1
y⊤
1 (∆

−1
i d1) = y⊤

1 µ+ ∥∆−1
i y1∥∗∞,

= y⊤
1 µ+ ∥∆−1

i y1∥1,

and
δ∗(y2|V1

i ) = max
s̃i∈V1

i

y⊤
2 s̃i = max

∥∆i(s̃i−µ)∥1≤Γ
y⊤
2 s̃i = max

∥d2∥1≤1
y⊤
2 (Γ∆

−1
i d2 + µ),

= y⊤
2 µ+ max

∥d2∥1≤1
y⊤
2 (Γ∆

−1
i d2) = y⊤

2 µ+ Γ∥∆−1
i y2∥∗1,

= y⊤
2 µ+ Γ∥∆−1

i y2∥∞.
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Notice that

min
y1

∥∆−1
i y1∥1 = min

y1

∑
g∈G

∣∣(∆−1
i y1)g

∣∣⇔ min
y1,λ

∑
g∈G

λg

∣∣∣∣∣ λ ≥ −∆−1
i y1

λ ≥ ∆−1
i y1

 ,

and

min
y2

∥∆−1
i y2∥∞ = min

y2

max
g∈G

∣∣(∆−1
i y2)g

∣∣⇔ min
y2,ν

{
ν

∣∣∣∣∣ νe ≥ −∆−1
i y2

νe ≥ ∆−1
i y2

}
.

By reintegrating the inequality constraint, Equation (14) under Assumption 7 is equivalent to the

following linear programming problem

max
w̃i∈W̄i,z̃i,y1,y2,λ,ν

z̃i,

s.t. (y1 + y2)
⊤µ+ (λ⊤e+ Γν)e ≤ −RŨ∗

i z̃i,

Y1 +Y2 = −W̃i,

λ ≥ −∆−1
i y1,

λ ≥ ∆−1
i y1,

νe ≥ −∆−1
i y2,

νe ≥ ∆−1
i y2,

which gives the result in Proposition 5.

Appendix B.5. Proof of Proposition 6

Consider the inequality constraint in Equation (14) under Assumption 8, i.e.,

RŨ∗
i z̃i ≤ W̃is̃i,∀s̃i ∈ VCVaR

i ,⇔ RŨ∗
i z̃i ≤ min

s̃i∈VCVaR
i

{
W̃is̃i

}
.

Given any w̃i, consider the minimization problem on the right-hand side

Ψ := min
s̃i,η


W̃is̃i

∣∣∣∣∣∣∣∣∣∣∣

s̃i =
∑

i∈I ηisi

e⊤η = 1

η ≤ ( 1
αI )e

η ≥ 0


,

which is equivalent to

Ψ := min
η

W̃i

(∑
i∈I

ηisi

)∣∣∣∣∣∣∣∣
e⊤η = 1

η ≤
(

1
αI

)
e

η ≥ 0

 .
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Let λ ∈ R and β ∈ RI be the dual variables. We have the following Lagrange function

L(η, λ,β) = W̃i

(∑
i∈I

ηisi

)
+ λ

(
1− e⊤η

)
+ β⊤

(
η −

(
1

αI

)
e

)
,

= λ−
(

1

αI

)
β⊤e+ W̃i

(∑
i∈I

ηisi

)
− λe⊤η + β⊤η,

and
∂L(η, λ,β)

∂ηi
= W̃isi − λ+ βi.

By Lagrangian duality, we have

Ψ = min
η≥0

max
λ,β≥0

L(η, λ,β).

As is the case for linear programming, Ψ is bounded below by

Υ∗ := max
λ,β≥0

min
η≥0

λ−
(

1

αI

)
β⊤e+ W̃i

(∑
i∈I

ηisi

)
− λe⊤η + β⊤η ≤ Ψ.

Let g(λ,β) = minη≥0 L(η, λ,β). we have

g(λ,β) =

{
λ−

(
1
αI

)
β⊤e, W̃isi − λ+ βi ≥ 0,∀i ∈ I,

−∞, otherwise,

which can be redefined as the optimal value of the following dual problem

Υ∗ := max
λ,β

λ−
(

1

αI

)
β⊤e,

s.t. W̃isi − λ+ βi ≥ 0, ∀i ∈ I,

β ≥ 0.

The above dual problem is strictly feasible and the feasible set is bounded. Thus, the strong duality

holds, i.e., Υ∗ = Ψ and both primal and dual values are attained. By reintegrating the inequality

constraint, Equation (14) under Assumption 8 is equivalent to the following linear programming

problem

max
w̃i∈W̄i,z̃i,λ,β

z̃i,

s.t.

(
λ− 1

αI

∑
i′∈I

βi′

)
e ≥ RŨ∗

i z̃i,

W̃isi′ + (−λ+ βi′)e ≥ 0, ∀i′ ∈ I,

β ≥ 0,

which gives the result in Proposition 7.
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Appendix B.6. Proof of Theorem 1

We first briefly present the optimal solution to the second-stage problem of OPA-PR under the

worst-case attribute rankings, following the proof of Theorem 2 in Wang (2024a). For any i ∈ I,
the second-stage problem of OPA-PR with the worst-case attribute rankings is a linear programming

problem with the following constraints{
RŨ∗

i z̃i − W̃is̃
∗
i ≤ 0,

e⊤w̃i = 1.

The coefficient matrix of this system is full rank. Thus, any solution satisfying the KKT conditions

is optimal. Assuming the inequality constraints are active, we have

RŨ∗
ijrz̃

∗
i = s̃∗ijw̃

∗
ijr.

Substituting these into the normalization constraint yields

∑
j∈J

∑
r∈R

RŨ∗
ijr

s̃∗ij
z̃∗i = 1.

By reintegrating the equality, we obtain

z̃∗i = 1
/∑

j∈J

∑
r∈R

RŨ∗
ijr

s̃∗ij

 ,

and

w̃∗
ijr =

RŨ∗
ijrz̃

∗
i

s̃∗ij
, ∀(j, r) ∈ J ×R.

It is straightforward to verify that (z̃∗i , w̃
∗
i ) satisfies the KKT conditions, confirming it as the

optimal solution to the second-stage problem of OPA-PR.

We next demonstrate the decomposability of the optimal weights. Let

z∗i = 1
/∑

j∈J

∑
r∈R

R

s̃∗ij

 ,

which represents the weight disparity with normalized utilities across the ranked alternatives from the

first-stage elicitation, where the sum of utilities of ranked alternatives equals 1. We have

w̃∗
ijr =

RŨ∗
ijrz

∗
i

s̃∗ij

(
z̃∗i
z∗i

)
=

1

s̃∗ij
∑

j∈J
1
s̃∗ij

(
z̃∗i
z∗i
Ũ∗
ijr

)
= wWR

ij wWU
ijr ,

where

wWR
ij =

1

s∗ij
∑

j∈J
1
s∗ij

, ∀j ∈ J ,
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and

wWU
ijr =

Ũ∗
ijr

∑
j∈J

1

s∗ij

/∑
j∈J

∑
r∈R

Ũ∗
ijr

s∗ij

 , ∀(j, r) ∈ J ×R.

Notice that
∑

j∈J w
WR
ij = 1 and

∑
j∈J

∑
r∈Rw

WU
ijr = 1, which gives the results in Theorem 1.

Appendix B.7. Proof of Proposition 7

For any (i, j) ∈ I×J , since Ũij ⊂ Uij , then ρ̃ij = min
ũij∈Ũij

EP[ũij(h(x, ξ))] ≥ min
uij∈Uij

EP[uij(h(x, ξ))] =

ρij . It sufficices to show that ρ̃ij ≤ ρij . Let σ be a sufficiently small positive number such that

EP[u
σ
ij(h(x, ξ))] ≤ ρij + σ with uσij ∈ Uij . By Proposition 2, since ψlij for all lij ∈ Lij are step

functions over Θ, there exists a piecewise linear concave function ũσij ∈ Ũij such that ũσij ≤ uσij for

all τhij
∈ Θ and hij ∈ Hij , which implies EP[ũ

σ
ij(h(x, ξ))] ≤ EP[u

σ
ij(h(x, ξ))]. Therefore, we have

ρ̃ij = min
ũ∈Ũij

EP[ũij(h(x, ξ))] ≤ EP[ũ
σ
ij(h(x, ξ))] ≤ EP[u

σ
ij(h(x, ξ))] ≤ ρij +σ. Since σ is arbitrarily small,

it follows that ρ̃ij ≤ ρij . It follows that ρ̃ij = ρij .

Appendix B.8. Proof of Proposition 8

For any (i, j) ∈ I × J , given the piecewise linear approximated ũij with jumps at τhij
for all

hij ∈ Hij , we have∫
Θ
ψlij (τ)dũij(τ) =

∑
hij∈Hij

∫ τhij

τhij−1

ψlij (τ)dũ(τ),

=
∑

hij∈Hij

uij(τhij
)− uij(τhij−1)

τhij
− τhij−1

∫ τhij

τhij−1

ψlij (τ)dτ,

=
∑

hij∈Hij

(
uij(τhij

)− uij(τhij−1)
) ∫ τhij

τhij−1 ψlij (τ)dτ

τhij
− τhij−1

,

=
∑

hij∈Hij

(
uij(τhij

)− uij(τhij−1)
)
ψlij (τ

′
hij

),

where τ ′hij
∈ (τhij−1, τhij

] and ψlij (τ
′
hij

) is constant.

On the other hand, consider the step-like approximation ψ̃lij for all lij ∈ Lij , which is discrete step

function with jumps at τhij
for all hij ∈ Hij . Then, we have∫

Θ
ψ̃lij (τ)duij(τ) =

∑
hij∈Hij

∫ τhij

τhij−1

ψ̃lij (τ)duij(τ),

=
∑

hij∈Hij

∫ τhij

τhij−1

ψlij (τ
′
hij

)duij(τ),

=
∑

hij∈Hij

ψlij (τ
′
hij

)
(
uij(τhij

)− uij(τhij−1)
)
.

Thus, the step-like approximation of ψ is equivalent to the piecewise linear approximation of u.
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Appendix B.9. Proof of Lemma 2

Given F :=
{
f = I[0,θ](·)

}
, dF (u1, u2) is well-defined for any u1, u2 ∈ U . For any (i, j) ∈ I × J ,

since u∗ij is Lipschitz continuous with modulus G and increasing on Θ, we have

0 ≤
u∗ij(τhij

)− u∗ij(τhij−1)

τhij
− τhij−1

≤ G, ∀hij ∈ Hij .

Then, by Proposition 2, for any τhij
∈ (τhij−1, τhij

], we have

∣∣ũ∗ij(τ)− u∗ij(τ)
∣∣ = ∣∣∣∣u∗ij(τhij−1) +

u∗ij(τhij
)− u∗ij(τhij−1)

τhij
− τhij−1

(τ − τhij−1)− u∗ij(τ)

∣∣∣∣ ,
=

∣∣∣∣ τ − τhij−1

τhij
− τhij−1

(
u∗ij(τhij

)− u∗ij(τ)
)
+

τhij
− τ

τhij
− τhij−1

(
u∗ij(τhij−1)− u∗ij(τ)

)∣∣∣∣ ,
≤
∣∣∣∣ τ − τhij−1

τhij
− τhij−1

(
u∗ij(τhij

)− u∗ij(τ)
)∣∣∣∣+ ∣∣∣∣ τhij

− τ

τhij
− τhij−1

(
u∗ij(τhij−1)− u∗ij(τ)

)∣∣∣∣ ,
≤

τ − τhij−1

τhij
− τhij−1

∣∣G(τhij
− τhij−1)

∣∣+ τhij
− τ

τhij
− τhij−1

∣∣G(τhij
− τhij−1)

∣∣ ,
= G(τhij

− τhij−1),

≤ Gζij ,

where ζij = maxhij∈Hij
(τhij

− τhij−1), which gives Equation (19). Since u∗ij(0) = 0 and u∗ij(R) = 1, we

have G ≥ 1/R.

Appendix B.10. Proof of Theorem 2

By Proposition 2, since u∗ij(0) = ũ∗ij(0) = 0 such that U∗
ijr = u∗ij(R−r+1) and Ũ∗

ijr = ũ∗ij(R−r+1).

By Lemma 2, we have

U∗
i − (Gζij)e ≤ Ũ∗

i ≤ U∗
i + (Gζij)e, ∀(i, j) ∈ I × J .

Consider the second-stage problem of OPA-PR with the unapproximated utilities

max
z̄i,w̄i

z̄i : (z̄i, w̄i) ∈ S1 :=

z̄i ∈ R, w̄i ∈ RJR

∣∣∣∣∣∣∣∣
RU∗

i z̄i ≤ W̄is̃
∗
i

e⊤w̄i = 1

w̄i ≥ 0


 ,

and with the PLA-approximated utilities

max
z̃i,w̃i

z̃i : (z̃i, w̃i) ∈ S2 :=

z̃i ∈ R, w̃i ∈ RJR

∣∣∣∣∣∣∣∣
R(U∗

i +Gζije)z̃i ≤ W̄is̃
∗
i

e⊤w̃i = 1

w̃i ≥ 0


 .
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Observe that Gζij z̃i ≥ 0 such that S2 ⊆ S1, which implies that z̃∗i ≤ z̄∗i . Let (θ∗i ,λ
∗
i ) be the

dual optimal solution of Equation (20). Assume that (z̃i, w̃i) is feasible for the problem with PLA-

approximated utilities, which is also feasible for the unapproximated problem. By strong duality, we

have
z̄∗i ≥ z̃i + θ∗i (1− e⊤w̃i) + (λ∗

i )
⊤ (W̄is̃

∗
i −RU∗

i z̃i
)
,

≥ z̃i +RGζij(λ
∗
i )

⊤ez̃i,

= (1 +RGζij(λ
∗
i )

⊤e)z̃i,

where the second inequality follows from W̄is̃
∗
i − RU∗

i z̃i ≥ RGζij(λ
∗
i )

⊤ez̃i for any feasible solution

for the approximated problem, λ∗
i ≥ 0, and e⊤w̃i = 1. For any feasible z̃i, we have

z̃i ≤
1

(1 +RGζij(λ∗
i )

⊤e)
z̄∗i ,

which gives a upper bound for z̃∗i , i.e.,

z̃∗i ≤ 1

(1 +RGζij(λ∗
i )

⊤e)
z̄∗i .

Consider the approximated problem with the following feasible set

S3 :=

z̃i ∈ R, w̃i ∈ RJR

∣∣∣∣∣∣∣∣
R(U∗

i −Gζije)z̃i ≤ W̄is̃
∗
i

e⊤w̃i = 1

w̃i ≥ 0

 .

which yields S1 ⊆ S3 and z̄∗i ≤ z̃∗i . Assume that (z̄i, w̄i) is feasible for the unapproximated problem,

which is also feasible for the approximated problem. Similarly, by strong duality, we have

z̃∗i ≥ z̄∗i ≥ z̄i + θ∗i (1− e⊤w̄i) + (λ∗
i )

⊤ (W̄is̃
∗
i −RU∗

i z̄i
)
,

≥ z̄i −RGζij(λ
∗
i )

⊤ez̄i,

= (1−RGζij(λ
∗
i )

⊤e)z̄i,

which gives a lower bound for z̃∗i , i.e,

(1−RGζij(λ
∗
i )

⊤e)z̄∗i ≤ z̃∗i .

By the proof of Theorem 1, for all (j, r) ∈ J ×R, we have

w̃∗
ijr =

RŨ∗
ijrz̃

∗
i

s̃∗ij
⇔

(1−RGζij(λ
∗
i )

⊤e)RŨ∗
ijr

s̃∗ij
z̄∗i ≤ w̃∗

ijr ≤
RŨ∗

ijr

(1 +RGζij(λ∗
i )

⊤e)s̃∗ij
z̄∗i ,

which gives the results in Theorem 2.
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